A top-down manner-based DCNN architecture for semantic image segmentation

نویسندگان

  • Kai Qiao
  • Jian Chen
  • Linyuan Wang
  • Lei Zeng
  • Bin Yan
چکیده

Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Per-Pixel Feedback for improving Semantic Segmentation

Semantic segmentation is the task of assigning a label to each pixel in the image.In recent years, deep convolutional neural networks have been driving advances in multiple tasks related to cognition. Although, DCNNs have resulted in unprecedented visual recognition performances, they offer little transparency. To understand how DCNN based models work at the task of semantic segmentation, we tr...

متن کامل

Learning Dense Convolutional Embeddings for Semantic Segmentation

This paper proposes a new deep convolutional neural network (DCNN) architecture for learning semantic segmentation. The main idea is to train the DCNN to produce internal representations that respect object boundaries. That is, for any two pixels on the same object, the DCNN is trained to produce nearly-identical internal representations; conversely, the DCNN is trained to produce dissimilar re...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Classification With an Edge: Improving Semantic Image Segmentation with Boundary Detection

We present an end-to-end trainable deep convolutional neural network (DCNN) for semantic segmentation with built-in awareness of semantically meaningful boundaries. Semantic segmentation is a fundamental remote sensing task, and most state-of-the-art methods rely on DCNNs as their workhorse. A major reason for their success is that deep networks learn to accumulate contextual information over v...

متن کامل

Sparse Dictionaries for Semantic Segmentation

A popular trend in semantic segmentation is to use top-down object information to improve bottom-up segmentation. For instance, the classification scores of the Bag of Features (BoF) model for image classification have been used to build a top-down categorization cost in a Conditional Random Field (CRF) model for semantic segmentation. Recent work shows that discriminative sparse dictionary lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017